Practical Calculations Equation Solve High Order Differential Equation Solver

  Nonlinear Equation System Solver
  Differential Equation Solver
  Differential Equation System Solver
  High Order Differential Equation




High Order Differential Equation Solver

The differential equation you want to solve:
Order

Formula:

Variable symbols
$\displaystyle {\frac{d^2y}{dt^2}}=f(t,y,y')=$
Necessary boundary conditions for solution:
$\displaystyle t_{0}=$
$\displaystyle y_{0}=$
$\displaystyle y'_{0}=$
The desired $t$ value to be found:
$t_n=$
Increment $\Delta t=$
Functions to be used in the equation:

$\begin{array}{lllll} x^a & \hookrightarrow & \mathrm{pow(x,a)} \\sin\, x & \hookrightarrow & \mathrm{sin(x)} &cos\,x & \hookrightarrow & \mathrm{cos(x)} \\tan\,x & \hookrightarrow & \mathrm{tan(x)} & ln\,x & \hookrightarrow &\mathrm{log(x)} \\e^x & \hookrightarrow & \mathrm{exp(x)} &\left|x\right| & \hookrightarrow & \mathrm{abs(x)} \\arcsin\,x & \hookrightarrow & \mathrm{asin(x)} &arccos\,x& \hookrightarrow & \mathrm{acos(x)} \\arctan\,x & \hookrightarrow & \mathrm{atan(x)} &\sqrt{x} & \hookrightarrow & \mathrm{sqrt(x)} \\\pi & \hookrightarrow &\mathrm{pi} &e \mathrm{ number} & \hookrightarrow & \mathrm{esay} \\ln\,2 & \hookrightarrow &\mathrm{LN2} & ln\,10 & \hookrightarrow & \mathrm{LN10} \\log_{2}\,e & \hookrightarrow & \mathrm{Log2e} &log_{10}\,e & \hookrightarrow & \mathrm{Log10e} \end{array}$

y' (single comma quotation mark) for first derivate,
y'' (two single comma quotation mark) for second derivate,
y''' (three single comma quotation mark) for third derivate
© Copyright 2024    Muhsoft